
Introduction to Algebra
Al-jabr is Arabic for restoration.
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Ancient Egyptians and Babylonians knew how to solve linear and quadratic
equations. Hindus used zero, base ten arithmetic, and negative numbers by
600 AD.

Mohammed ibn-Musa al-Khowarizmi wrote Hisab al-jabr w’al muqabala
in 830 AD. This work was highly influential on European mathematicians, also
helping to spread the use of Hindu-Arabic numerals.

The landmark advance in symbolism was made by Viéte (1540-1603) who used
letters to represent known constants (parameters).

Symbolic algebra reached full maturity with the publication of Descartes’ La
Géométrie in 1637.
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Symbolic Algebra

Letters are used for unknown numbers (variables).

Letters can also be used for constants, for generality or just to save writing
them out.

π = 3.14159 . . .

e = 2.71828 . . .

The multiplication operator, ×, is avoided as much as possible.

3x = x+ x+ x

The division operator, ÷, is replaced by / or fractions.

x/2 =
x

2
=

1

2
x
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Relativity
E = mc2

where c ≈ 3× 108 m/sec.

Boyle’s Ideal Gas Law
PV = mkT

where Boltzmann’s constant for air is

k ≈ 1.3806503× 10−23 m2kg

sec2K◦

Ohm’s Law
V = IR
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Linear Algebra

A linear expression can be simplified to the form

ax+ b

where a and b are constants and x is the variable.

A linear function can be simplified to the form

y = ax+ b

which graphs as a straight line.

A linear equation can be simplified to the form

ax = b

which has the solution x = b/a unless a = 0.

In all of these, a = 0 represents a special case.
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Quadratic Algebra

A quadratic expression can be simplified to the form

ax2 + bx+ c

where a, b and c are constants and x is the variable.
When a = 0 this reduces to a linear expression.

A quadratic function can be simplified to the form

y = ax2 + bx+ c

A quadratic equation can be simplified to the form

ax2 + bx+ c = 0

How does one simplify?
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Algebraic Properties

Reflexive Property: a = a

Transitive Property: If a = b and b = c, then a = c.

Additive Identity: x+ 0 = x
Multiplicative Identity: 1x = x

Commutative Property of Addition: a+ b = b+ a
Commutative Property of Multiplication: ab = ba

Associative Property of Addition: (a+ b) + c = a+ (b+ c)
Associative Property of Multiplications: (ab)c = a(bc)

Distributive Property:

a(b+ c) = ab+ ac

−(b+ c) = −b− c

These are true for all possible values of a, b, c, and x.
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Commutative Property

Does it work for subtraction?

a− b 6= b− a for all a 6= b

Subtraction can be treated as addition of negatives.

a− b = a+ (−b) = −b+ a

Does it work for division?

a/b 6= b/a for all a 6= b

Division can be treated as multiplication by reciprocals.

a/b = a

(
1

b

)
=

(
1

b

)
a
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Re-ordering Operations

abc = (ab)c
= (ba)c commutative
= b(ac) associative
= b(ca) commutative
= (bc)a associative
= (cb)a commutative
= cba

When dealing only with multiplication, the order doesn’t matter.

When mixing additions and multiplication, order does matter.
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Simplifying Expressions

(1) distribute multiplications and sign changes.

(2) collect common terms.

Example:
3(x− 4)− x+ 5

Distribute 3 into (x - 4):
3x− 12− x+ 5

Collect constants:
3x− x− 7

Collect x terms:
2x− 7

Linear expression:
ax+ b
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Example:
x(2x+ 3)− 4(x− 1)

Distribte x into (2x+ 3):

2x2 + 3x− 4(x− 1)

Distribute −4 into (x− 1):

2x2 + 3x− 4x+ 4

Collect x terms:
2x2 − x+ 1

Quadratic expression:
ax2 + bx+ c


